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Abstract
We consider coupled nonholonomic LR systems on the product of Lie groups.
As examples, we study n-dimensional variants of the spherical support system
and the rubber Chaplygin sphere. For a special choice of the inertia operator,
it is proved that the rubber Chaplygin sphere, after reduction and a time
reparametrization becomes an integrable Hamiltonian system on the (n − 1)-
dimensional sphere. Also, we showed that an arbitrary L+R system introduced
by Fedorov can be seen as a reduced system of an appropriate coupled LR
system.

PACS numbers: 02.40.Yy, 02.30.Ik, 45.20.Jj
Mathematics Subject Classification: 37J60, 37J35, 70H45

1. Introduction

In this paper we study nonholonomic geodesic flows on the direct product of Lie groups with
specially chosen right-invariant constraints and left-invariant metrics.

Let Q be an n-dimensional Riemannian manifold Q with a nondegenerate metric κ(·, ·)
and let D be a nonintegrable (n − k)-dimensional distribution on the tangent bundle T Q. A
smooth path q(t) ∈ Q, t ∈ � is called admissible (or allowed by constraints) if the velocity
q̇(t) belongs to Dq(t) for all t ∈ �. Let q = (q1, . . . , qn) be some local coordinates on Q in
which the constraints are written in the form

(
αj

q , q̇
) =

n∑
i=1

α
j

i q̇i = 0, j = 1, . . . , k, (1)

where αj are independent 1-forms. The admissible path q(t) is called a nonholonomic geodesic
if it is satisfies the Lagrange–d’Alambert equations

d

dt

∂L

∂q̇i

= ∂L

∂qi

+
k∑

i=1

λjα
j (q)i, i = 1, . . . , n, (2)
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where the Lagrange multipliers λj are chosen such that the solutions q(t) satisfy constraints
(1) and the Lagrangian is given by the kinetic energy L = 1

2κ(q̇, q̇) = 1
2

∑
ij κij q̇i q̇j .

After the Legendre transformation pi = ∂L/q̇i = ∑
j κij q̇j , i = 1, . . . , n, one can also

write the Lagrange–d’Alambert equations as a first-order system on the cotangent bundle
T ∗Q. As for the Hamiltonian systems, the Lagrangian L(q, q̇) (or the Hamiltonian
H(q, p) = 1

2

∑
ij κijpipj in the cotangent representation of the flow) is always the first

integral of the system.
Suppose that a Lie group K acts by isometries on (Q, κ) (the Lagrangian L is K- invariant)

and let ξQ be the vector field on Q associated with the action of the one-parameter subgroup
exp(tξ), ξ ∈ k = TIdK . The following version of the Noether theorem holds (see [1, 2]): if
ξQ is a section of the distribution D then

d

dt

(
∂L

∂q̇
, ξQ

)
= 0. (3)

On the other hand, let ξQ be transversal to D, for all ξ ∈ k. In addition, suppose that
Q has a principal bundle structure π : Q → Q/K and that D is the collection of horizontal
spaces of a principal connection. Then the nonholonomic geodesic flow defined by (Q, κ,D)

is called a K-Chaplygin system. The system (2) is K-invariant and reduces to the tangent
bundle T (Q/K) = D/K (for the details see [2, 8, 11, 26]).

Equations (2) are not Hamiltonian. However, in some cases they have a rather strong
property—an invariant measure (e.g., see [1, 4, 27]). Within the class of K-Chaplygin systems,
the existence of an invariant measure is closely related with their reduction to a Hamiltonian
form after an appropriate time rescaling dτ = N dt (see [8, 10, 11, 18, 29]).

Veselov and Veselova [30, 31] constructed nonholonomic systems on unimodular Lie
groups with right-invariant nonintegrable constraints and left-invariant metrics, so-called
LR systems, and showed that they always possess an invariant measure. Similar integrable
nonholonomic problems on Lie groups, with left- and right-invariant constraints, are studied
in [3, 17, 19, 21, 22]. Recently, a nontrivial example of a nonholonomic LR system, which
can be regarded also as a generalized Chaplygin system (n-dimensional Veselova rigid body
problem [17, 30]) such that the Chaplygin reducibility theorem is applicable for any dimension
was given by Fedorov and Jovanović [18].

It appears that LR systems can be viewed as a limit case of certain artificial systems (L+R
systems) on the same group, which also possess an invariant measure (see Fedorov [15]). The
latter systems do not have a straightforward mechanical or geometric interpretation and arise
as a ‘distortion’ of a geodesic flow on G whose kinetic energy is given by sum of a left- and
a right-invariant metric. On the other hand, we shall prove that an arbitrary L+R system on
G can be obtained as a reduction of a coupled nonholonomic LR system defined on the direct
product G × G.

In Schneider [28] a class of nonholonomic systems defined on a semi-direct product of
a group G and a vector space V that are reducible to L+R systems on G is considered. One
of the best known examples of integrable nonholonomic systems with an invariant measure
is the celebrated Chaplygin sphere which describes a dynamically non-symmetric ball rolling
without sliding on a horizontal plane [1, 9]. It is interesting that Chaplygin’s sphere as well as
its n-dimensional generalization fits within both constructions. In the construction described
in [28] the configuration space is the Lie group of Euclidean motion SE(n), that is the semi-
direct product of SO(n) and R

n [28]. Besides, the Chaplygin sphere is an LR system on
the direct product SO(n) × R

n (e.g., see [16]). This was a starting point in considering the
coupled nonholonomic LR systems below.
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1.1. Outline and results of the paper

In section 2 we recall the definition and basic properties of LR and L+R systems. We define
the coupled LR systems and show that any L+R system can be obtained as a reduction of an
appropriate coupled LR system (sections 3 and 4). An example of a coupled LR system on
G × g is given, which provides an alternative generalization of the Chaplygin sphere problem
(section 4, system (73) in section 6).

In section 5 we study an n-dimensional variant of the spherical support system introduced
by Fedorov [13]: the motion of a dynamically nonsymmetric ball S with the unit radius around
its fixed center that touches N arbitrary dynamically symmetric balls whose centers are also
fixed, and there is no sliding at the contact points.

Recall that the rubber rolling of the sphere S2 over some other fixed convex surface in R
3

means that in the addition to the constraint given by the condition that the velocity of the contact
point is equal to zero, we have the no-twist condition that rotations about the normal to the
surface are forbidden. The rubber rolling of the dynamically non-symmetric sphere over
another sphere, considered as a Chaplygin system on the bundle SO(3) × S2 → S2 (where
SO(3) acts diagonally on the total space), as well as the Hamiltonization in sphero-conical
variables of S2 is given by Koiller and Ehlers [12]. The integrable cases are found by Borisov
and Mamaev [7]. In particular, when the radius of the fixed sphere tends to infinity, we get
the rubber rolling of the sphere over the plane (rubber Chaplygin sphere). The Chaplygin
reducing multiplier for the rubber Chaplygin sphere is given in [11].

By the analogue, we define the n-dimensional rubber spherical support system with
additional no-twist conditions at the contact points. It appears that both systems fit into the
construction of coupled LR systems. Similarly as for the three-dimensional spherical support
system studied in [13], we prove that the three-dimensional rubber spherical support system
is integrable (section 5).

Finally, in section 6 we consider the n-dimensional rubber Chaplygin sphere problem
describing the rolling without slipping and twisting of an n-dimensional ball on an (n − 1)-
dimensional hyperplane H in R

n as coupled LR systems on the direct product SO(n) × R
n−1.

It appears that the rubber Chaplygin sphere is a SO(n − 1) × R
n−1-Chaplygin system closely

related to the n-dimensional nonholonomic Veselova problem, which allows as to prove the
existence of the Chaplygin multiplier for a specially chosen inertia operator of the ball. In
particular, when n = 3, the multiplier exists for any inertia tensor of the ball and reduces to
that obtained in [11, 12].

2. Preliminaries

2.1. LR systems

An LR system on a Lie group G is a nonholonomic geodesic flow of a left-invariant metric
and right-invariant nonintegrable distribution D ⊂ T G (see [30, 31]). Through the paper we
suppose that all considered Lie groups G have bi-invariant Riemannian metrics, or equivalently
AdG-invariant Euclidean scalar products 〈·, ·〉 on corresponding Lie algebras g = TIdG. In
particular, Lie groups G are unimodular, i.e., tr adω = 0, for all ω ∈ g. In what follows we
shall identify g and g∗ by means of an invariant scalar product 〈·, ·〉, and T G and T ∗G by
the bi-invariant metric. For clarity, we shall use the symbol ω for the elements in g and the
symbol m for the elements in g∗ ∼= g.

The Lagrangian is defined by L(g, ġ) = 1
2 〈Iω, ω〉, where ω = g−1 · ġ is the angular

velocity in the moving frame. Here I : g → g is a symmetric positive definite (with respect

3
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to 〈·, ·〉) operator. The corresponding left-invariant metric will be denoted by (·, ·)I . The
distribution D is determined by its restriction d to the Lie algebra and it is nonintegrable if and
only if d is not a subalgebra of g. Let h be the orthogonal complement of d with respect to
〈·, ·〉 and let a1, . . . , ak be an orthonormal base of h. Then the right-invariant constraints can
be written as

〈�, h〉 = 〈ω, hg〉 = 0, hg = Adg−1(h) = g−1 · h · g,

or, equivalently,

〈αi, ω〉 = 0, αi = Adg−1(ai), i = 1, . . . , k. (4)

Here � = Adg(ω) = ġ · g−1 represents angular velocity in the space.
Equations (2) in the left trivialization take the form

ṁ = [m,ω] +
k∑

i=1

λiαi, (5)

ġ = g · ω, (6)

where m = ∂L/∂ω = Iω ∈ g∗ is the angular momentum in the body frame.
The Lagrange multipliers λi can be found by differentiating the constraints (4). They are

actually defined on the whole phase space T ∗G and we can consider the system (5) and (6)
on T ∗G as well (see [31]). The constraint functions 〈αi, ω〉 are then integrals of the extended
system and the nonholonomic geodesic flow is just the restriction of (5) and (6) onto the
invariant submanifold (4).

Instead of (5) and (6), one can consider the closed system consisting of (5) and

α̇i = [αi, ω], i = 1, . . . , k, (7)

on the direct product g1+k = {(m, α1, . . . , αk)}. Let I−1|hg = prhg ◦ I−1 ◦ prhg , where prhg

is the orthogonal projection to hg . Then the system (5) and (7) has an invariant measure with
density μ = √

det(I−1|hg ) = √
det(〈I−1(αi), αj 〉) (see [31]).

Also, since for ξ ∈ g, the associate vector field ξG of the left G-action is right invariant
and the momentum mapping of the left action equals M = Adg(m) (angular momentum in
the space), the LR system (5) and (6) has the Noether conservation laws:

d

dt
〈Adg(m), ξ 〉 = 0, ξ ∈ d. (8)

If the linear subspace h is the Lie algebra of a subgroup H ⊂ G, then the Lagrangian
L and the right-invariant distribution D are invariant with respect to the left H-action. As a
result, the LR system can naturally be regarded as an H-Chaplygin system [18].

2.2. Geodesic flow on G with L+R metric

In addition to the nondegenerate linear operator I defining the left-invariant metric (·, ·)I ,
introduce a constant symmetric linear operator �0 : g → g defining a right-invariant metric
(·, ·)� on the n-dimensional compact Lie group G: for any vectors u, v ∈ TgG we put
(u, v)� = 〈ug−1,�0vg−1〉. We take the sum of both metrics and consider the corresponding
geodesic flow on G described by the Lagrangian

L = 1
2 〈ω, Iω〉 + 1

2 〈gωg−1,�0gωg−1〉 = 1
2 〈ω, Iω〉 + 〈ω,�gω〉,

where �g = Adg−1�0Adg . We can also consider the case when �g is not positive definite,
but the total inertia operator B = I + �g is nondegenerate and positive definite on the whole
group G.

4
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The geodesic motion on the group is described by the Euler–Poincaré equations

ṁ = [m,ω] + g−1 ∂L

∂g
, m = ∂L

∂ω
= Bω, (9)

together with the kinematic equation ġ = g · ω.
In order to find an explicit expression for g−1(∂L/∂g), we first note that for any ξ ∈ g,

〈ξ, g−1(∂L/∂g)〉 = vξ (L), where vξ is the left-invariant vector field on G generated by ξ .
Since the metric (·, ·)I is left invariant, we have

vξ (L) = 1
2vξ (〈ω,�ω〉) = 1

2

〈
ω,� adξω + adT

ξ �ω
〉 = 〈�ω, [ξ, ω]〉 = 〈ξ, adω �ω〉.

As a result, g−1(∂L/∂g) = adω �ω.
Also, in view of the definition of �, its evolution is given by the n × n matrix equation

�̇ = � adω + adT
ω�. (10)

Since 〈·, ·〉 is AdG invariant scalar product, we have adT
ω = −adω, and �̇ = [�, adω].

Equations (9) and (10) form a closed system on the space g × Symm(n) with the
coordinates ωi,�ij

(
ω = ∑

i ωiei,� = ∑
i�j �ij ei⊗ej

)
, where e1, . . . , en is an orthonormal

base of g.

2.3. L+R systems

Following Fedorov [15], consider equations (9) modified by rejecting the term g−1(∂L/∂g).
As a result, we obtain the another system

d

dt
(Bω) = [Bω,ω], ġ = g · ω, B = I + � (11)

on T G, or the system

d

dt
(Bω) = [Bω,ω],

d

dt
� = � adω + adT

ω� (12)

on the space g × Symm(n). This is generally not a Lagrangian system, and, in contrast
to equations (9) and (10), it possesses the ‘momentum’ integral 〈Bω,Bω〉. In view of the
structure of the kinetic energy, we shall refer to the system (11) (or (12)) as L+R system on G
[15].

The L+R system (12) possesses also the kinetic energy integral 1
2 〈ω,Bω〉 and an invariant

measure (in coordinates ωi,�ij ) μ dω1 ∧ · · · ∧ dωn ∧ d�11 ∧ · · · ∧ d�nn with density
μ = √

det(I + �) (see [14, 15]).
As mentioned above, a nonholonomic LR system on a Lie group G can be obtained as a

limit case of a certain L+R system on this group. Indeed, suppose that the operator defining a
right-invariant metric on G is degenerate and has the form � = ε(α1 ⊗ α1 + · · · + αk ⊗ αk),

k < n, ε = const > 0, where, as in (4), α1, . . . , αk are orthonormal right-invariant vector
fields αi = g−1 · ai · g, ai = const ∈ g. The L+R system (12) on the space (ω, α1, . . . , αk)

can be represented in form

I ω̇ = I (I + �)−1[Iω, ω], �̇ = � adω + adT
ω�. (13)

Then the following statement holds (see [15]). As ε → ∞, equations (13) transform
to the equations with multipliers (5) and constraints (4), where m = Iω. Also the density√

detB/
√

ε of the invariant measure of the L+R system tends to the density of the LR system
multiplied by a constant factor. Note that as ε → ∞, the original equations (12) become
singular. For this reason, before taking the limit they must be transformed to the form (13).

5



J. Phys. A: Math. Theor. 42 (2009) 225202 B Jovanović

3. Coupled nonholonomic LR systems

Define a coupled nonholonomic LR system on the direct product G × G1 (G = G1) as a LR
system given by the Lagrangian function

L = 1
2 〈Iω, ω〉 + 1

2D〈w, w〉 (14)

and right-invariant constraints

〈�, h0〉 = 0, (15)

〈� + ρiW, hi〉 = 0, i = 1, . . . , q, (16)

where hi , i = 1, . . . , q are mutually orthogonal linear subspaces of g.
Here (ω, w) = (

g−1ġ, g−1
1 ġ1

)
, is the angular velocity in the body and (�, W) =

Ad(g,g1) = (Adg(ω), Adg1(w)) is the angular velocity in the space, (g, g1) ∈ G × G1. The
constant D is greater than zero, while ρi, i = 1, . . . , q are arbitrary non-zero, real parameters.

The Lagrangian (14) in the second variable is right invariant as well. It is convenient to
write the equations of motion both in the left trivialization (in variables g and ω) and right
trivialization (in variables g1 and W)

T (G × G1) ≈ G × G1 × g × g1 = {(g, g1, ω, W)}. (17)

Then the right-invariant distribution D ⊂ T (G × G1) is given by

D = {(g, g1, ω, W)|〈Adg(ω), h0〉 = 0, 〈Adg(ω) + ρiW, hi〉 = 0, i = 1, . . . , q}.
Let h

g

i = Adg−1(hi ) = g−1 · hi · g and let prhg

i
: g → h

g

i be the orthogonal projections,
i = 0, . . . , q.

Proposition 3.1. The admissible path (g(t), g1(t), ω(t), W(t)) is a motion of the
nonholonomic LR system (14)–(16) if it satisfies equations

Bω̇ = [Iω, ω] − (
B−1|hg

0

)−1
prhg

0
B−1([Iω, ω]), (18)

DẆ = −
q∑

i=1

D

ρi

prhi
(Adgω̇), (19)

ġ = g · ω, (20)

ġ1 = W · g1. (21)

where B = I + � = I +
∑q

i=1 D
/
ρ2

i prhg

i
and B−1|hg

0
= prhg

0
◦ B−1 ◦ prhg

0
: h

g

0 → h
g

0 .

Proof. The equations of a motion in the right trivialization (or in the space frame) read

Ṁ =
q∑

i=0

�i, (22)

DẆ =
q∑

i=1

ρi�i, (23)

ġ = � · g, (24)

ġ1 = W · g1, (25)

6



J. Phys. A: Math. Theor. 42 (2009) 225202 B Jovanović

where the Lagrange multipliers (reaction forces) �i belong to hi (i = 0, 1, . . . , q) and
M = Adg(Iω) is the first component of angular momentum in the space frame (the second
component is M1 = DW).

Differentiating the constraints (16), from (23) we obtain

d

dt
〈� + ρiW, hi〉 = 〈�̇ + ρiẆ, hi〉 =

〈
�̇ + ρi

q∑
j=1

ρj

D
�j , hi

〉
=

〈
�̇ +

ρ2
i

D
�i, hi

〉
= 0,

that is

�i = − D

ρ2
i

prhi
(�̇), i = 1, . . . , q. (26)

Equation (19) follows from (23) and (26) and the relation

�̇ = Adgω̇. (27)

From (26) and identities (27), prhg

i
= Adg−1 prhi

Adg and

Adg−1Ṁ = I ω̇ + [ω, Iω],

the equation (22) in the left trivialization takes the form

Bω̇ = [Iω, ω] + λ0, λ0 = Adg−1(�0). (28)

Now it remains to find the Lagrange multiplier λ0. Differentiating (15) we get

〈�̇, h0〉 = 〈Adg(ω̇), h0〉 = 〈
ω̇, h

g

0

〉 = 0.

By (28) it follows that λ0 = −(
B−1|hg

0

)−1
prhg

0
B−1([Iω, ω]). The proof is complete. �

The Lagrangian (14) as well as constraints (16) are right ({Id} × G1)-invariant and
equations (18)–(20) can be seen as a reduction of the system to

D̄ = D/({Id} × G1) = {(g, ω, W)|〈Adg(ω), h0〉 = 0, 〈Adg(ω) + ρiW, hi〉 = 0, i = 1, . . . , q}.
Let D0 ⊂ T G be the right-invariant distribution defined by (15).

Theorem 3.2. Equations (18)–(20) on D̄ reduce to the following system on D0 ⊂ T G:

d

dt
(Bω) = [Bω,ω] − (

B−1|hg

0

)−1
prhg

0
B−1([Iω, ω]), ġ = g · ω. (29)

Proof. Equations (18) and (20) form a closed system on D0. If (g(t), ω(t)) is a solution to
(18) and (20), then one can easily reconstruct the motion of W. Let

k = (h1 + · · · + hq)
⊥. (30)

From (20) we have

d

dt
prkW = 0, (31)

while the hi-components of the angular velocity W are determined from the constraints (16):

prhi
W = −1/ρi prhi

Adg(ω), i = 1, . . . , q.

Now, let a1, . . . , akj
be the orthonormal base of hj . Then α1 = Adg−1(a1), . . . , αkj

=
Adg−1

(
akj

)
will be the orthonormal base of h

g

j . We have

prhg

j
(ω) =

kj∑
i=1

αi ⊗ αiω =
kj∑

i=1

〈αi, ω〉αi.

7
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Whence, by using (7) and the identity 〈ω, [αi, ω]〉 = 0, we obtain

d

dt

(
prhg

j
(ω)

) =
kj∑

i=1

(〈ω̇, αi〉αi + 〈ω, [αi, ω]〉αi + 〈ω, αi〉[αi, ω])

= prhg

j
(ω̇) +

kj∑
i=1

〈ω, αi〉[αi, ω].

The above equation implies that (18) and (20) can be rewritten in the form (29). �

The derivation of 〈Bω,ω〉 along the flow is as follows: d
dt

〈Bω,ω〉 = 2〈[B, ω], ω〉 +
2〈λ0, ω〉. The first term is equal to zero since 〈·, ·〉 is an AdG-invariant scalar product, while
the second term is equal to zero from the constraint (15). We can refer to Lred = 1

2 〈Bω,ω〉
as to the reduced Lagrangian, or reduced kinetic energy. If prkW ≡ 0, the reduced kinetic
energy coincides with the kinetic energy of the reconstructed motion on the whole phase space.

From equation (22) we also get the linear conservation law
d

dt

(
prk0

Adg(Iω)
) = 0, where k0 = (h0 + h1 + · · · + hq)

⊥. (32)

The integrals (31) and (32) are actually Noether integrals (8) of the system. The other
Noether integrals are trivial:

d

dt

(
prhi

Adg(Iω) − D

ρi

prhi
W

)
= 0, i = 1, . . . , q.

Remark 3.1. If h0 = 0, i.e., we do not impose the constraint (15), the reduced system is an
L+R system on the Lie group G

d

dt
(Bω) = [Bω,ω], ġ = g · ω. (33)

Further suppose that (30) is the Lie algebra of the closed Lie subgroup K ⊂ G and that linear
subspaces hi are AdK -invariant:

Adkhi = hi , k ∈ K, i = 1, . . . , q.

Then, since h
kg

i = h
g

i , k ∈ K , the L+R equations (33) are left K-invariant and we can reduce
them to G/K × g.

Remark 3.2. In the case when h0 is the Lie algebra of a closed subgroup H ⊂
G, h1 + h2 + · · · + hq = g and linear spaces hi are AdH invariant, then the coupled LR
system (14)–(16) is a (H × G1)-Chaplygin system with respect to the action:

(a, b) · (g, g1) = (ag, g1b
−1), (a, b) ∈ H × G1.

The reduced space D/(H × G1) is the tangent bundle of the homogeneous space G/H .

Theorem 3.3. An arbitrary L+R system (11) can be seen as a reduction of an appropriate
coupled LR system.

Proof. Let e1, . . . , en be the orthonormal base of g in which the symmetric operator �0

has the diagonal form: �0 = ∑n
i=1 σiei ⊗ ei . Then the right-invariant term in (11) reads

� = �g = ∑n
i=1 σie

g

i ⊗ e
g

i , where e
g

i are given by

e
g

1 = Adg−1(e1), . . . , e
g
n = Adg−1(en). (34)

Consider the coupled nonholonomic LR system (14) and (16), where q = n and hi are
the lines in the directions of ei, i = 1, . . . , n. We can choose parameters D,ρi , such that
σi = D

/
ρ2

i , i = 1, . . . , n. The system represents a {Id}×G1- Chaplygin system with reduced
equations of the required form (11). �

8
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4. N-coupled systems

There is a straightforward generalization of the construction to the case when we have
coupling with N different Lie groups, that is the configuration space is the direct product
G × G1 × · · · × GN and the Lagrangian is

L = 1

2
〈Iω, ω〉 +

1

2

N∑
i=1

Di〈wi , wi〉i , (35)

where 〈·, ·〉i are AdGi
invariant scalar products on Lie algebras gi = TIdGi, i = 1, . . . , N .

Let us fix a base e1, . . . , en of g and some bases f1, . . . , fdi
of gi (di = dim gi ). Let

Ai : g → R
pi , Bi : gi → R

pi , i = 1, . . . , N,

be the linear mappings with matrixes [Ai] (pi × n) and [Bi] (pi × di) in the above bases. In
addition, we suppose that the (pi × pi)-matrixes

[Ci] = [Bi][Bi]
T , i = 1, . . . , N

are invertible. Consider the right-invariant constraints given by

Ai� + BiWi = 0, i = 1, . . . , N. (36)

Here, ω, wi and �, Wi are velocities in the left and right trivializations, respectively and
Di > 0, i = 1, . . . , N are real parameters.

Let [�], [Wi] denote the column matrix, representing � and Wi in the chosen bases. We
have [ω]g = [�], where [ξ ]g is the column, representing ξ ∈ g in the base (34).

In the right trivialization, the equation in Wi reads

Di[Ẇi] = [Bi]
T [λi], (37)

where [λi] is the Lagrange multiplier (pi × 1)-matrix. Differentiating the constraints (36),
from (37) we get

[λi] = −D[Ci]
−1[Ai][�̇], i = 1, . . . , N. (38)

Repeating the arguments of theorems 3.1 and 3.2, the considered N-coupled nonholonomic
system reduces to the L+R system

d

dt
(Bω) = [Bω,ω], ġ = g · ω,

where Bω = Iω + �ω and �ω in the matrix form, relative to the base (34), is given by

[�ω]g =
N∑

i=1

Di[Ai]
T [Ci]

−1[Ai][ω]g.

As above, one can easily incorporate an additional right-invariant constraint of the
form (15).

4.1. LR systems on G × g × · · · × g

As an example, consider the case where Gi are all equal to the Lie algebra g considered as an
Abelian group, 〈·, ·〉i = 〈·, ·〉 and the constraints (36) are given by

[�i,�] + ρiWi = 0, i = 1, . . . , N, (39)

where �i are fixed elements of the Lie algebra g and ρi are real parameters. Note that,
since Gi = g is an Abelian group, the angular velocities coincide with the usual velocity:
ξ̇i = Wi = wi , ξ ∈ g.

9
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The equations of a motion in the right trivialization read

Ṁ =
N∑

i=0

[�i, �i], ġ = � · g, (40)

DiẆi = ρi�i, ξ̇i = Wi , (41)

where M = Adg(Iω). This is a {Id} × gN–Chaplygin system and it is reducible to T G.
Differentiating the constraints (39), from (41) we get the Lagrange multipliers

�i = − D

ρ2
i

[�i, �̇], i = 1, . . . , N.

Therefore, equations (40) in the left trivialization take the form

I ω̇ = [Iω, ω] −
N∑

i=1

Di

ρ2
i

[[γi, ω̇], γi], ġ = g · ω,

where γi = Adg−1(�i), i = 1, . . . , N . Next, from the identities

d

dt
[[γi, ω], γi] = [[γi, ω̇], γi] + [[[γi, ω], γi], ω], i = 1, . . . , N,

we obtain the following proposition.

Proposition 4.1. The reduced equations of the N-coupled nonholonomic system (35), (39) are
given by the L+R system

d

dt
(Bω) = [Bω,ω], ġ = g · ω, (42)

where

Bω = Iω +
N∑

i=1

Di

ρ2
i

[[γi, ω], γi].

Remark 4.1. Nonholonomic systems on semi-direct products G ×σ V , where σ is a
representation of the Lie group G on the vector space V , are studied in Schneider [28].
Proposition 4.1 can be derived from theorem 3 given in [28].

5. Spherical support

Consider the motion of a dynamically nonsymmetric ball S in R
n with the unit radius around

its fixed center. Suppose that the ball touches N arbitrary dynamically symmetric balls
whose centers are also fixed, and there is no sliding at the contact points. We call this
mechanical construction the spherical support. For n = 3 the spherical support is defined by
Fedorov [13, 15].

The configuration space is SO(n)N+1: the matrices g, gi ∈ SO(n) map the frames
attached to the ball S and the ith peripheral ball to the fixed frame, respectively. The
Lagrangian is of the form (35), where for 〈·, ·〉 we take the scalar product proportional to
the Killing form

〈X, Y 〉 = − 1
2 tr(XY ), (43)

the angular velocities ω,�, wi , Wi of the balls are defined as above, I : so(n) → so(n) is the
inertia tensor of the ball S and Di, ρi ∈ R are the central inertia moment and the radius of the
ith peripheral ball.

10
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Figure 1. The spherical support.

Let �i ∈ R
n be the unit vector fixed in the space and directed from the center C of the ball

S to the point of contact with the ith ball. Nonholonomic constraints express the absence of
sliding at the contact points. This means that the velocity of the point of contact of the ball S
with the ith ball, in the space frame, is the same as the velocity of the corresponding point on
the ith ball.

Consider the fixed point on the ball S with coordinates r and R in the body and space
frames, respectively. Then the velocity of the point r in space is given by the Poisson equation
(e.g., see [17]) V = Ṙ = d

dt
(g · r) = ġ ·g−1 ·g · r = �R. Therefore, the velocity of the contact

point with the ith peripheral ball is given by ��i . Similarly, the velocity of the corresponding
contact point of the ith ball in the space frame is given by −ρiW�i and the constraints are

��i + ρiWi�i = 0, i = 1, . . . , N. (44)

We see that the n-dimensional spherical support is actually an N-coupled LR system
studied in the previous section. Let

γi = g−1�i, i = 1, . . . , N (45)

be the contact points of S with the ith ball (i = 1, . . . , N) in the frame attached to the ball S.
Then the right-invariant constraints (44) can be rewritten in the form

〈� + ρiWi , hi〉 = 0, i = 1, . . . , N, (46)

where

hi = R
n ∧ �i, h

g

i = Adg−1(hi ) = R
n ∧ γi, i = 1, . . . , N

are linear (no mutually orthogonal) subspaces of the Lie algebra so(n).
From the identity prhg

i
ω̇ = (ω̇γi)∧ γi = ω̇γi ⊗ γi + γi ⊗ γiω̇, the equations of the motion

become

I ω̇ = [Iω, ω] −
N∑

i=1

Di

ρ2
i

(ω̇γi ⊗ γi + γi ⊗ γiω̇) , ġ = g · ω,

DiẆi = −Di

ρi

(�̇�i ⊗ �i + �i ⊗ �i�̇), ġi = Wi · gi, i = 1, . . . , N.

We have the conservation laws

Ẇi − Ẇi�i ⊗ �i − �i ⊗ �iẆi = 0, i = 1, . . . , N,

which together with the right ({Id} × SO(n)N)-symmetry lead to the following statement.

11
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Proposition 5.1. The spherical support system reduces to the L+R flow

d

dt
(Bω) = [Bω,ω], ġ = g · ω, (47)

where Bω = Iω +
∑N

i=1 Di

/
ρ2

i (ωγi ⊗ γi + γi ⊗ γiω) and γi are defined by (45).

Note that the vectors γi in the frame attached to the ball S satisfy the Poisson equations
(e.g., see [17])

γ̇i = −ωγi, i = 1, . . . , N. (48)

By introducing Xi = γi ⊗ γi , from (48) we obtain

Ẋi = [Xi , ω], i = 1, . . . , N. (49)

Combining (47) and (49) we get a family of integrals—the coefficients of the polynomials

tr

(
Bω +

N∑
i=1

μiXi

)k

, k = 1, . . . , n. (50)

For n = 3 the system is integrable by the Euler–Jacobi theorem, and its generic invariant
manifolds are two-dimensional tori (see [13, 15]).

Remark 5.1. If the positions of peripheral balls are mutually orthogonal

(�i, �j ) = (γi, γj ) = δij , 1 � i, j � N � n,

then the components of γi can be seen as redundant coordinates on the Stiefel variety
V (n,N) = SO(n)/SO(n − N). The system is invariant with respect to the SO(n − N)

action, representing the rotations in the space orthogonal to span{γ1, . . . , γN }. The
SO(n−N)-reduced system on T SO(n)/SO(n−N) ∼= V (n,N)× so(n) is given by Poisson
equations (48) and the first equation in (47).

5.1. Rubber spherical support

Now consider the rubber spherical support system in R
n. The analogue of rubber rolling is

that, in addition to the constraints (46), the rotations of the ball S and ith peripheral ball around
the vector �i are the same:

〈� − Wi , ki〉 = 0, i = 1, . . . , N, (51)

where

ki = h⊥
i , ki

∼= so(n − 1).

Since prki
= I − prhi

we get

Proposition 5.2. The rubber spherical support system is described by the equations

d

dt
(B∗ω) = [B∗ω,ω], (52)

DiẆi = Di�̇ − Di

1 + ρi

ρi

(�̇�i ⊗ �i + �i ⊗ �i�̇), i = 1, . . . , N, (53)

ġ = g · ω, (54)

ġi = Wi · gi, i = 1, . . . , N, (55)

12
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where

B∗ω = Iω + (D1 + · · · + DN)ω +
N∑

i=1

Di

1 − ρ2
i

ρ2
i

(ωγi ⊗ γi + γi ⊗ γiω) .

Equations (53) are trivial since W can be expressed in terms of � from constraints (46)
and (51).

As above, we get family of geometric integrals that can be expressed as the coefficients
of the polynomials

tr

(
B∗ω +

N∑
i=1

μiXi

)k

, k = 1, . . . , n. (56)

For n = 3, among the reduced kinetic energy 1
2 〈B∗ω,ω〉 and integrals (56) there are four

independent ones.

Theorem 5.3. For n = 3, the rubber spherical support system (52) and (54) is solvable by
the Euler–Jacobi theorem and its generic invariant manifolds are two-dimensional tori.

6. Rubber Chaplygin sphere

Following [16, 17], consider the generalized Chaplygin sphere problem of an n-dimensional
ball of radius ρ, rolling without slipping on an (n − 1)-dimensional hyperspace H in R

n.
For the configuration space we take the direct product of Lie groups SO(n) and R

n, where
g ∈ SO(n) is the rotation matrix of the sphere (mapping frame attached to the body to the
space frame) and r ∈ R

n is the position vector of its center C (in the space frame). For a
trajectory (g(t), r(t)) define angular velocities

ω = g−1ġ, � = ġg−1, w = W = ṙ .

The Lagrangian of the system is then given by

L = 1
2 〈Iω, ω〉 + 1

2m(w, w). (57)

Here I : so(n) → so(n) and m are the inertia tensor and mass of the ball, 〈·, ·〉 is given by
(43) and (·, ·) is the Euclidean scalar product.

Let � ∈ R
n be a vertical unit vector (considered in the fixed frame) orthogonal to the

hyperplane H and directed from H to the center C. The condition for the sphere to roll without
slipping leads to the velocity of the contact point being equal to zero:

−ρ�� + W = 0. (58)

This is a right-invariant nonholonomic constraint of the form (36). If we take the fixed
orthonormal base E1 = (1, 0, . . . , 0, 0)T , . . . , En = (0, 0, . . . , 0, 1)T , such that � = En, then
the constraint (58) takes the form

ṙi = ρ�in, i = 1, . . . , n − 1, ṙn = 0, where �ij = 〈�,Ei ∧ Ej 〉.
The last constraint is holonomic, and for the physical motion we take rn = ρ. From now

on we take SO(n) × R
n−1 for the configuration space of the rolling sphere, where R

n−1 is
identified with the affine hyperplane ρ� + H.

Let h ⊂ so(n) be the linear subspace h = R
n ∧ � and k ∼= so(n − 1) its orthogonal

complement in so(n). Define the rubber Chaplygin sphere as a Chaplygin sphere (57), (58)
subjected to the additional right-invariant constraints

〈�, k〉 = 〈ω, kg〉 = 0, kg = Adg−1k, ⇐⇒ �ij = 0, 1 � i < j � n − 1,

(59)

13
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describing the no-twist condition at the contact point. As a result, the distribution

D = {(g, r, ω, W)|〈ω, kg〉 = 0, W = ρAdg(ω)�}
is right SO(n) × R

n−1 as well as the left SO(n − 1) × R
n−1 invariant (SO(n − 1) is the

subgroup of SO(n) with the Lie algebra k). Moreover, the rubber Chaplygin sphere is a
(SO(n − 1) × R

n−1)-Chaplygin system.
Let γ = g−1� be the vertical vector in the frame attached to the ball. Then

hg = Adg−1(h) = R
n ∧ γ =: hγ , kg = Adg−1(k) = (Rn ∧ γ )⊥ =: kγ

and the reduced space D/(SO(n−1)×R
n−1) is the tangent bundle T Sn−1 of the sphere which

can be identified by the position of γ .
The equations in the right trivialization read

Ṁ = �0 − ρ�1 ∧ �, ġ = � · g, (60)

mẆ = �1, ṙ = W, (61)

where M = Adg(Iω) is the ball angular momentum in the space and �0 ∈ h,�1 ∈ R
n are

Lagrange multipliers.
From (58) and (61) we find �1 = mρ�̇�. On the other hand

�1 ∧ � = mρ(�̇�) ∧ � = mρ(�̇� ⊗ � + � ⊗ ��̇) = mρ prh(�̇). (62)

Whence, we can write equations (60) as a closed system on D0 ⊂ T SO(n), where D0

is the right-invariant distribution defined by (59) (reduction of R
n−1-symmetry). From (27),

(62) and the relation prhγ (ω̇) = (ω̇ · γ ) ∧ γ = ω̇γ ⊗ γ + γ ⊗ γ ω̇, in the left trivialization of
T SO(n) the reduced system takes the form

I ω̇ = [Iω, ω] − mρ2(ω̇γ ⊗ γ + γ ⊗ γ ω̇) + λ0, ġ = g · ω,

where λ0 = Adg−1(�0). Let

k = Iω + mρ2 prhγ ω = Iω + mρ2(ωγ ⊗ γ + γ ⊗ γω) ∈ so(n)∗ (63)

be the angular momentum of the ball relative to the contact point (see [17]). Then we have

Proposition 6.1. The motion of the rubber Chaplygin sphere, in variables ω, g, is described
by equations

k̇ = [k, ω] + λ0, ġ = g · ω, (64)

or, in variables ω, γ , by equations

k̇ = [k, ω] + λ0, γ̇ = −ωγ. (65)

The Lagrange multiplier matrix λ0 belongs to kγ and is determined from the constraints (59).

6.1. Reduction and Hamiltonization

From the constraints (59), the momentum (63) equals k = Iω + mρ2ω. Therefore, as in the
three-dimensional case [6, 11], equations (64) are equivalent to the motion of a rigid body
about the fixed point with the left-invariant kinetic energy given by the inertia operator I +mρ2I
and constraint (59) (n-dimensional Veselova rigid body problem [17, 30]).

Now we simply follow [18]. The reduced Lagrange–d’Alambert equations of the rubber
Chaplygin sphere (57)–(59) on

T Sn−1 ∼= D/(SO(n − 1) × R
n−1) ∼= D0/SO(n − 1)

14
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are given by(
∂Lred

∂γ
− d

dt

∂Lred

∂γ̇
, ξ

)
= 〈(I + mρ2)�(γ, γ̇ ), (I − prkγ )[�(γ, γ̇ ),�(γ, ξ)]〉, (66)

for all virtual displacements ξ ∈ Tγ Sn−1 (see [18]). Here �(γ, γ̇ ) = γ ∧ γ̇ is the momentum
mapping of the right SO(n)-action on the round sphere Sn−1 and the reduced Lagrangian is
given by

Lred(γ, γ̇ ) = 1
2 〈(I + mρ2)�(γ, γ̇ ),�(γ, γ̇ )〉. (67)

After the Legendre transformation

p = ∂Lred

∂γ̇
= ∂Lreg

∂�

∂�

∂γ̇
= mρ2γ̇ − I� · γ

we can also write the reduced Lagrange–d’Alambert equations as a first-order system on
the cotangent bundle T ∗Sn−1 which is realized as a subvariety of R

2n = (q, p) defined by
constraints (γ, γ ) = 1, (γ, p) = 0 (since I� is skew-symmetric, the momentum p satisfies
(γ, p) = 0). The system takes the symmetric form

γ̇ = −�(γ, γ̇ (γ, p))γ, ṗ = −�(γ, γ̇ (γ, p))p, (68)

where γ̇ = γ̇ (γ, p) is the inverse of the Legendre transformation.
Let σ be the canonical volume 2(n − 1)-form on T ∗Sn−1. Then we have (see [18])

Proposition 6.2. The reduced system (68) on T ∗Sn−1 possesses an invariant measure

1/

√
det(I + mρ2I|hγ )σ, I + mρ2I|hγ = prhγ ◦ (I + mρ2I) ◦ prhγ .

Furthermore, as it follows from [18], with the operator I defined on the bi-vectors X ∧ Y

by a diagonal matrix A = diag(A1, . . . , An) by

I (X ∧ Y ) = AX ∧ AY − mρ2X ∧ Y, (69)

the Chaplygin reducibility is applicable for any dimension.

Theorem 6.3.

(i) If the inertia operator is given by (69), the density of an invariant measure in
proposition 6.2 takes the following simple form:

(Aγ, γ )−(n−2)/2.

(ii) Under the time substitution dτ = 1/
√

(Aγ, γ ) dt the reduced system (66) (or (68))
becomes a Hamiltonian system describing a geodesic flow on Sn−1 with the Lagrangian

L∗
(

γ,
dγ

dτ

)
= 1

2

[(
A

dγ

dτ
,

dγ

dτ

)
(Aγ, γ ) −

(
Aγ,

dγ

dτ

)2
]

. (70)

(iii) For A with distinct eigenvalues, the latter system is algebraic completely integrable and
generic invariant manifolds are (n − 1)-dimensional tori.

(iv) Moreover, the SO(n−1)-reconstruction of the motion is solvable: the generic trajectories
of the system (64) are straight lines (but not uniform) over (n − 1)-dimensional invariant
tori.
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The complete integration is presented in [18]. Given a solution (g(t), ω(t)) of the system
(64), the reconstruction of r-variable simply follows from the integration of the constraint (58)

r(t) − r(t0) = ρ

∫ t

t0

Adg(t)ω(t)� dt.

In the case n = 3, under the isomorphism between so(3) and R
3

ωij = εijlωl, kij = εijlkl , (71)

from (65) we obtain the classical rubber Chaplygin’s ball equations [11]

�̇k = �k × �ω + λ�γ , �̇γ = �γ × �ω, (72)

where λ is determined from the constraint (�ω, �γ ) = 0 and �k = I �ω + mρ2 �ω − mρ2(�ω, �γ )�γ =
I �ω + mρ2 �ω.

For n = 3, the relation (69) defines a generic inertia tensor. Thus the rubber Chaplygin
sphere in R

3 is integrable. Indeed, let I : R
3 → R

3 be an arbitrary inertia tensor. Under the
isomorphism (71), the matrix A is determined from (69) via

A = �(I + mρ2I)−1, � =
√

det(I + mρ2I).

The Hamiltonizaton of the reduced system on T ∗S2 is obtained in [11, 12]. The Chaplygin
multiplier given in theorem 6.3

dτ = dt/
√

�((I + mρ2I)−1γ, γ )

up to the multiplication by a constant, coincides with the expression obtained in [11, 12].

6.2. Remarks on the Chaplygin sphere

• Note that the Chaplygin sphere equations

k̇ = [k, ω], γ̇ = −ωγ, k = Iω + mρ2(ωγ ⊗ γ + γ ⊗ γω)

coincide with the reduced equations of the spherical support system for N = 1, where
instead of D1/ρ1 we should put mρ2. This is not the case for rubber analogues of the
systems.

• Borisov and Mamaev [5, 6] proved that the classical Chaplygin rolling sphere problem
is Hamiltonian after an appropriate time rescaling. Recently, the Hamiltonization of
the homogeneous Chaplygin rolling sphere problem in R

n is given in [20], while the
Hamiltonization of the non-homogeneous reduced Chaplygin sphere problem is obtained
in [25].

• Let us turn back to the coupled LR system described in proposition 4.1. Take N = 1
and denote �1 = �, γ1 = γ,D1 = m, ρ1 = 1/ρ. The system (42) is additionally G�-
invariant, where G� ⊂ G is the isotropy group of �. Let O = G/G� be the adjoint orbit
of �. Then (42) reduces to O × g

k̇ = [k, ω], γ̇ = [γ, ω], k = Bω = Iω + mρ2[[γ, ω], γ ]. (73)

For G = SO(3) we reobtain the equations of a motion of the Chaplygin sphere in R
3.

Thus the system (73) can be seen as an alternative generalization of the Chaplygin sphere
problem.
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